skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 2, 2026
  2. Future climate change may bring local benefits or penalties to surface air pollution, resulting from changing temperature, precipitation, and transport patterns, as well as changes in climate-sensitive natural precursor emissions. Here, we estimate the climate penalties and benefits at the end of this century with regard to surface ozone and fine particulate matter (PM 2.5 ; excluding dust and smoke) using a one-way offline coupling between a general circulation model and a global 3-D chemical-transport model. We archive meteorology for the present day (2005 to 2014) and end of this century (2090 to 2099) for seven future scenarios developed for Phase 6 of the Coupled Model Intercomparison Project. The model isolates the impact of forecasted anthropogenic precursor emission changes versus that of climate-only driven changes on surface ozone and PM 2.5 for scenarios ranging from extreme mitigation to extreme warming. We then relate these changes to impacts on human mortality and crop production. We find ozone penalties over nearly all land areas with increasing warming. We find net benefits due to climate-driven changes in PM 2.5 in the Northern Extratropics, but net penalties in the Tropics and Southern Hemisphere, where most population growth is forecast for the coming century. 
    more » « less
  3. Two series of lactone-terminated alkanethiol adsorbates with five- and six-membered lactone groups, γ-COCnSH and δ-COCnSH (n = 11, 12), were synthesized and employed to create nanoscale self-assembled monolayers (SAMs) on gold substrates to mimic the properties of commercially available poly(lactic-co-glycolic acid) (PLGA) and poly(glycolic acid) (PGA) surfaces. 1H and 13C nuclear magnetic resonance (NMR) were employed to characterize the adsorbate molecules. The thicknesses of the corresponding self-assembled monolayers (SAMs) were evaluated by ellipsometry. The conformational characteristics of the SAMs were analyzed using polarization modulation infrared reflection adsorption spectroscopy (PM-IRRAS), with a focus on the C-H antisymmetric stretching vibrations of the alkyl spacers. To evaluate the packing densities of the monolayers, X-ray photoelectron spectroscopy (XPS) measurements were performed. Separately, contact angle measurements provided insights into the wettability of the surfaces. Remarkably, the contact angle data across a broad range of probe liquids for the γ-COC11SH and γ-COC12SH SAMs were consistently similar to each other and to the contact angle values of the PLGA surface, rather than to PGA. This finding suggests that the lactone-terminated SAMs investigated in this study effectively mimic nanoscale polyester surfaces, enabling the exploration of interfacial properties of polyesters in the absence of swelling and/or surface reconstruction phenomena. 
    more » « less
  4. Molecular interactions at interfaces have a significant effect on the wetting properties of surfaces on a macroscale. 
    more » « less
  5. Abstract. Despite significant precursor emission reductions in theUS over recent decades, atmospheric nitrate deposition remains an importantterrestrial stressor. Here, we utilized statistical air mass back trajectoryanalysis and nitrogen stable isotope deltas (δ(15N)) toinvestigate atmospheric nitrate spatiotemporal trends in the northeastern USfrom samples collected at three US EPA Clean Air Status and Trends Network(CASTNET) sites from December 2016–2018. For the considered sites, similarseasonal patterns in nitric acid (HNO3) and particulate nitrate(pNO3) concentrations were observed with spatial differences attributedto nitrogen oxide (NOx) emission densities in source contributingregions that were typically ≤ 1000 km. Significant spatiotemporalδ(15N) variabilities in HNO3 and pNO3 were observedwith higher values during winter relative to summer, like previous reportsfrom CASTNET samples collected in the early 2000s for our study region. Inthe early 2000s, δ(15N) of atmospheric nitrate in the northeastUS had been suggested to be driven by NOx emissions; however, we didnot find significant spatiotemporal changes in the modeled NOxemissions by sector and fuel type or δ(15N, NOx) for thesource regions of the CASTNET sites. Instead, the seasonal and spatialdifferences in the observed δ(15N) of atmospheric nitrate weredriven by nitrate formation pathways (i.e., homogeneous reactions ofNO2 oxidation via hydroxyl radical or heterogeneous reactions ofdinitrogen pentoxide on wetted aerosol surfaces) and their associatedδ(15N) fractionation. Under the field conditions of lowNOx relative to O3 concentrations and when δ(15N,NOx) emission sources do not have significant variability, wedemonstrate that δ(15N) of atmospheric nitrate can be a robusttracer for diagnosing nitrate formation. 
    more » « less
  6. Abstract. The northeastern US represents a mostly urban corridorimpacted by high population and fossil fuel combustion emission density.This has led to historically degraded air quality and acid rain that hasbeen a focus of regulatory-driven emissions reductions. Detailing thechemistry of atmospheric nitrate formation is critical for improving themodel representation of atmospheric chemistry and air quality. The oxygenisotopic compositions of atmospheric nitrate are useful indicators intracking nitrate formation pathways. Here, we measured oxygen isotope deltas(Δ(17O) and δ(18O)) for nitric acid (HNO3)and particulate nitrate (pNO3) from three US EPA Clean AirStatus and Trends Network (CASTNET) sites in the northeastern US fromDecember 2016 to 2018. The Δ(17O, HNO3) and δ(18O, HNO3) values ranged from 12.9 ‰ to 30.9 ‰ and from 46.9 ‰ to 82.1 ‰, and the Δ(17O, pNO3) and δ(18O, pNO3) ranged from 16.6 ‰ to 33.7 ‰ and from 43.6 ‰ to 85.3 ‰, respectively. There was distinct seasonality ofδ(18O) and Δ(17O), with higher values observedduring winter compared to during summer, suggesting a shift in O3 to HOxradical chemistry, as expected. Unexpectedly, there was a statisticaldifference in Δ(17O) between HNO3 and pNO3, withhigher values observed for pNO3 (27.1 ± 3.8) ‰relative to HNO3 (22.7 ± 3.6) ‰, andsignificant differences in the relationship between δ(18O) andΔ(17O). This difference suggests atmospheric nitratephase-dependent oxidation chemistry that is not predicted in models. Basedon the output from GEOS-Chem and both the δ(18O) and Δ(17O) observations, we quantify the production pathways of atmosphericnitrate. The model significantly overestimated the heterogeneousN2O5 hydrolysis production for both HNO3 and pNO3, afinding consistent with observed seasonal changes in δ(18O) andΔ(17O) of HNO3 and pNO3, though large uncertaintiesremain in the quantitative transfer of δ(18O) from majoratmospheric oxidants. This comparison provides important insight into therole of oxidation chemistry in reconciling a commonly observed positive biasfor modeled atmospheric nitrate concentrations in the northeastern US. 
    more » « less